MATH 112A Review: Line Integrals, Surface Integrals, Parametrization of Curves

Facts to Know:

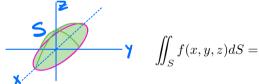
(Line integral of a scalar field) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a scalar field and let $\vec{r}(t)$ be a bijective parametrization of a curve C in \mathbb{R}^n with parameter $t \in [a,b]$ such that $\vec{r}(a)$ and $\vec{r}(b)$ are the endpoints of C. Then the line integral along C is

$$\int_C f(x_1, \dots, x_n) ds =$$

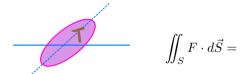
(Line integral of a vector field) Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a vector field and let $\vec{r}(t)$ be a bijective parametrization of a curve C in \mathbb{R}^n with parameter $t \in [a,b]$ such that $\vec{r}(a)$ and $\vec{r}(b)$ are the endpoints of C. Then the line integral along C is in the direction of \vec{r} is

$$\int_C F(\vec{r}) \cdot d\vec{r} =$$

(Surface integral of a scalar field) Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a scalar field and let $\vec{r}(s,t)$ be a parametrization of a surface S in \mathbb{R}^3 with (s,t) vary in some region T in the plain. Then, the surface integral over S is given by



(Surface integral of a vector field) Let $F : \mathbb{R}^3 \to \mathbb{R}$ be a scalar field and let $\vec{r}(s,t)$ be a parametrization of a surface S in \mathbb{R}^3 with (s,t) vary in some region T in the plain. Then, the surface integral over S is given by



Examples:

1. Let F(x,y) = (P(x,y), Q(x,y)) and let $\vec{r}(t) = (x(t), y(t))$ be the parametrization of C. What is the line integral?

2. Let F(x,y)=(y,-x) and consider the parametrization $\vec{r}(t)=(\cos t,\sin t)$ for $t\in[0,2\pi]$ of the unit circle C with counterclockwise orientation. Compute

$$\int_C F(\vec{r}) \cdot \vec{r}'(t) dt$$